Touchstone Words


How Light Learning Works | Touchstone Words

Popular Articles

Sexual activity and body health
Do You Know If You Are Sexually Active
Biofuel, Biodiesel, Environment, Fuel, Fossil Fuel, Energy, biohydrogen, biomethanol, biohyrdrogen d
Pros and Cons of Biofuel Energy
Porn actors who go to Hollywood
From Porn performances to Hollywood
social and economical state of a country
Pros and cons of capitalism vs socialism
Perceptions and mind thinking
What are perceptions and how to manage them
Taylor Swift nightmare songs
Top Ten Worst Taylor Swift Songs Shared by her Fans
How to get right attitude woman
Why in dating and relationship, attitude matters
Blow job tips
Pros and Cons of Blow Jobs
Public sex
Best Places for Public Hookup
LGBT, lesbian, gay, homosexual, sexuality, relationship, love, acceptance, crisis, gender, identity
What we know about LGBT and the gender identity crisis

How Light Learning Works

By Katie Lee on 2017-05-16

Deep Learning systems essentially mimic the way the human brain learns from an accumulation of examples. Computations using these systems, however, are highly complex and extremely demanding, even for the most super of computers.


A team of researchers at MIT and elsewhere has developed a new approach to such computations, using light rather than electricity, which they say could vastly improve the speed and efficiency of deep learning systems. Their results appear today in the journal Nature Photonics in a paper by MIT postdoc Yichen Shen, graduate student Nicholas Harris, professors Marin Soljacic and Dirk Englund, and eight others.


Soljacic says that many researchers over the years have made claims about optics-based computers, but that "people dramatically over-promised, and it backfired." While many proposed uses of such photonic computers turned out not to be practical, a light-based neural-network system developed by this team "may be applicable for deep-learning for some applications.”


Traditional computer architectures are not the most efficient when it comes to the calculations needed for important neural network tasks. Such tasks typically involve repeated multiplications of matrices, which can be very computationally intensive in conventional CPU or GPU chips.


After years of research, the MIT team has come up with a way of performing these operations optically instead. "This chip, once you tune it, can carry out matrix multiplication with, in principle, zero energy, almost instantly," Soljacic says. "We've demonstrated the crucial building blocks but not yet the full system."


By way of analogy, Soljacic points out that even an ordinary eyeglass lens carries out a complex calculation (the so-called Fourier transform) on the light waves that pass through it. The way light beams carry out computations in the new photonic chips is far more general but has a similar underlying principle. The new approach uses multiple light beams directed in such a way that their waves interact with each other, producing interference patterns that convey the result of the intended operation. The resulting device is something the researchers call a programmable nanophotonic processor.


The result, Shen says, is that the optical chips using this architecture could, in principle, carry out calculations performed in typical artificial intelligence algorithms much faster and using less than one-thousandth as much energy per operation as conventional electronic chips. "The natural advantage of using light to do matrix multiplication plays a big part in the speed up and power savings, because dense matrix multiplications are the most power hungry and time consuming part in AI algorithms" he says.


The new programmable nanophotonic processor, which was developed in the Englund lab by Harris and collaborators, uses an array of waveguides that are interconnected in a way that can be modified as needed, programming that set of beams for a specific computation. "You can program in any matrix operation," Harris says. The processor guides light through a series of coupled photonic waveguides. The team's full proposal calls for interleaved layers of devices that apply an operation called a nonlinear activation function, in analogy with the operation of neurons in the brain.


To demonstrate the concept, the team set the programmable nanophotonic processor to implement a neural network that recognizes four basic vowel sounds. Even with this rudimentary system, they were able to achieve a 77 percent accuracy level, compared to about 90 percent for conventional systems. There are "no substantial obstacles" to scaling up the system for greater accuracy, Soljacic says.


Englund adds that the programmable nanophotonic processor could have other applications as well, including signal processing for data transmission. "High-speed analog signal processing is something this could manage" faster than other approaches that first convert the signal to digital form, since light is an inherently analog medium. "This approach could do processing directly in the analog domain," he says.


The team says it will still take a lot more effort and time to make this system useful; however, once the system is scaled up and fully functioning, it can find many user cases, such as data centers or security systems. The system could also be a boon for self-driving cars or drones, says Harris, or "whenever you need to do a lot of computation but you don't have a lot of power or time."


Along with allowing for face and speech recognition programs, these systems could search vast amounts of medical data to examine patterns that could be useful diagnostically. They could also scan chemical formulas to enable new medicines.


Article Comments

By Same Author

Mysteries behind cosmos codes
Cosmos Code Helps Probe For Space Oddities
Learn about fake news
How to Fight Fake News
Learn about computer malware and viruses
Finding Malware Infections
Augmented reality and its use in medical treatments
Augmented Reality Helps Surgeons See Through Tissue
Learn about bitcoins
The Technology Behind Bitcoin
Largest prime number
Discovering the Largest Prime Number
Learn about Quantum Computing
Quantum Computing Through qubits
Use music to track body movements
Tracking body Movements Through Music
Software for making computers robots
Software Teaches Computers to Walk and Run
Learn about ground penetrating radar
Lincoln Laboratory and the Ground-Penetrating Radar

Affiliated Companies

Disclaimers And Things

Copyright © WEG2G, All Rights Reserved
Designed & Developed by DC Web Makers